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The symmetric state of a rotating fluid differentially 
heated in the horizontal 

By ALLAN R. ROBINSON* 
Pierce Hall, Harvard University 

(Received 16 March 1969) 

The motion of a fluid inside a rotating annulus of square cross-section, whose 
dimensions are small compared with the distance from the axis of rotation, is 
considered. The rigid side walk are held a t  different constant temperatures, and 
the fluid motions that occur are strongly influenced by Coriolis accelerations. 
A detailed study is made of the azimuthally independent state, a Hadley cell, 
in the limit of small thermal Rossby number. It is convenient to employ a 
boundary layer type analysis, essentially with respect to the Taylor number, and 
all the imposed boundary conditions are rigorously satisfied. 

An entirely geostrophic thermal wind is found to obtain over the main body of 
the fluid. The circulation in the plane of the annular cross-section is entirely 
confined within narrow boundary layers and consists of a superposition of three 
cellular motions: a cell occupying the cross-section and two additional cells con- 
fined to the side-wall boundary layers. These motions are intimately related to 
the rotational constraint. The temperature distribution and its relation to the 
conductive and convective processes are determined. 

1.1. Introduction 1. The Hadley cell 

When a fluid is differentially heated in a horizontal direction, motions immediately 
occur, even if the imposed horizontal temperature difference is infinitesimal, 
since there is no pressure distribution capable of balancing the thermally induced 
gravitational body force. The simplest steady state attainable for a fluid of finite 
vertical extent with heating independent of one horizontal co-ordinate is that of 
a single cellular motion. The fluid ascends in the region of maximum heating, 
moves horizontally towards the region of maximum cooling, descends, and 
returns to its place of origin. 

When the fluid is observed in a co-ordinate frame which is rotating relative to 
an inertial system, Coriolis acceleration produces a component of horizontal 
velocity perpendicular to the direction of the imposed thermal gradient. This 
component of velocity may be called the thermal wind. If rotation and heating 
rates are such that the Coriolis acceleration and the thermal body force are of the 
same order of magnitude, the thermal wind will be the largest component of 
velocity over the main body of the fluid. 

The simple cellular motion of a horizontally heated rotating fluid bears the 
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name of George Hadley (1735), who fmt made the above remarks in a discussion 
of the general circulation of the atmosphere. 

1.2. Hadley’s original work 
The large-scale atmospheric motions have long been known to be driven by the 
latitudinal variation of the heating of the earth by the sun. However, the pre- 
dominant feature of the resulting circulation is its longitu%al component. 
Hadley first related this phenomenon to the constraint of the earth’s rotation in 
the paper referred to above, entitled ‘Concerning the Cause of the General Trade- 
Winds ’. In  his words, 

‘ I Think the Causes of the General Trade-Winds have not been fully explained 
by any of those who have wrote on that Subject, for want of more particularly 
and distinctly considering the Share the diurnal Motion of the Earth has in 
the Production of them. . . .’t 

Hadley considered the atmosphere to be thermally driven away from the state 

‘For, let us suppose the Air in every Part to keep an equal Pace with the 
Earth in its diurnal Motion. . .then by the Action of the Sun on the Parts 
about the Equator, and the Rarefaction of the Air proceding therefrom, 
let the Air be drawn down thither from the N. and S. Parts.’$ 

‘. . .the Air, as it moves from the Tropicks toward the Equator, having a less 
velocity than the Parts of the Earth it arrives at, will have a relative Motion 
contrary to that of the diurnal Motion of the Earth in these Parts. . . ’ Q  

of solid rotation: 

He then showed that easterlies would occur near the equator because 

Westerlies at mid-latitudes were similarly explained. 
Hadley then made quantitative calculations of the magnitude of the winds 

assuming the air to keep the longitudinal velocity of the earth at the point of the 
airs origin. Finding the values thus calculated to be too large, he called upon 
surface friction: 

‘. . .before the Air from the Tropicks can arrive at the Equator, it must have 
gained some Motion Eastward from the Surface of the Earth or Sea, whereby 
its relative Motion will be diminished, and in several successive Circulations, 
may be supposed to be reduced to the Strength it is found to be of.’ll 

‘That without the Assistance of the diurnal Motion of the Earth, Navigation, 
especially Easterly and Westerly, would be very tedious, and to make the 
whole Circuit of the Earth perhaps impracticable.’tt 

Hadley concluded 

1.3. Modelling in geophysical fluid dynamics 

The general circulation of the real atmosphere is of course much more complicated 
than a simple Hadley cell. Furthermore, theoretical studies are hampered not 
only because of the complexity of the governing mathematics, but also because 
meaningful quantitative data on real geophysical flows are very difficult to 

t Hadley (1735), p. 68. $ Ibid. p. 60. 5 Idem. ]I Ibid. p. 61. tt Ibid. p. 62. 
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obtain, especially on the large scale. Detailed theory could give information not 
obtainable observationally, but such theory is not useful unless it has first under- 
gone a careful and detailed comparison with nature in some instances. 

Recently, theoretical geophysical fluid dynamics has been stimulated by the 
initiation of controlled laboratory experiments in rotating tanks (Long 1953). 
These experiments, of interest in themselves, are also capable in some sense of 
modelling the larger scale, but the precise validity of the modelling remains an 
open question of great interest. 

A class of experiments has been performed with a rotating fluid differentially 
heated in the horizontal. The initial motivation for these experiments lay in the 
possibility of their relation to the origin of the earth's magnetic field by convection 
in the liquid core (Hide 1958); and the meteorological interest aroused by early 
experimental results has led to extensive further work (Fultz 1956). The results 
are certainly a fascinating example of the physics of natural convection in the 
presence of rotation. 

The annular space between two coaxial cylinders mounted on a rotating plat- 
form is filled with water. A horizontal temperature gradient is imposed on the 
boundaries. Three distinct types of steady states appear. First, a Hadley cell, 
or symmetric rkgime, in which the velocity and temperature fields are inde- 
pendent of the azimuthal angle about the axis of the cylinders is found. Secondly, 
a wave regime is found, i.e. a laminar flow in which the streamlines viewed from 
the top form a wave pattern, and various wave numbers appear. Thirdly, a 
turbulent regime is found with various numbers of well-defined eddies. 

The regime and wave number selected by the fluid depends upon the imposed 
horizontal temperature difference and the rotation rate of the apparatus. For 
a given moderately strong rotation rate (Q > 0.1 sec-l), the symmetric regime 
occurs both for sufficiently small (AT < 0.3 "C), and sufficiently large temperature 
differences. (These will be designated the lower and upper symmetric rhgimes.) 
At intermediate temperature differences the wave regime occurs. The transitions 
from regime to regime and from one wave number to another occur at deh i t e  
critical values of the parameters. For large enough rotation rates, where the 
transition to the upper symmetric regime occurs at  large temperature differences, 
the turbulent regime occurs between two wave regimes. A diagram of the various 
regimes is presented in figure 1. Since a full range of experiments has not as yet 
been performed on a given fluid in a given annular geometry, figure 1 is qualita- 
tively inferred from several experiments. 

To date, experiments, especially in the symmetric regime, have been mostly 
qualitative with some quantitative results for critical values of parameters 
governing the instabilities. Some ambiguity exists in the results because of lack 
of control of the boundary conditions, e.g. surface evaporation, wind stress, and 
uneven heating. 

Meteorological intkrest in these experiments lies in the apparent relation of the 
wave and eddy regimes to the general circulation patterns in the atmosphere. 
However, to gain understanding of these complicated regimes by existing 
theoretical techniques, it is necessary first to have a complete theory of the 
symmetric state. Then by study of the stability of the symmetric state, the 
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criterion for the initial onset of the wave rhgime can be found. Finally, it would 
be possible to attempt to determine the conditions which govern the preference of 
one particular wave number over another, a highly non-linear problem. 

(Upper) 
symmetric 

symmetric 

I 
ccna (Taylor no.) 

FIGURE 1. Qualitative picture of the various rhgimes. 

Each step in this theoretical approach depends upon the preceding one and 
becomes succeedingly more difficult. Thus the theory of the Hadley cell, of 
interest per se, also provides the necessary firm foundation for a study of the more 
complicated states of a horizontally heated rotating fluid. 

1.4. The present problem 
In  formulating a theoretical approach to a general class of phenomena, it is of 
course invaluable to study the simplest physical situation possible. We want the 
important aspects of the physics to be retained within the simplest framework in 
which their full implications can be realized, and also the situation considered 
must be simultaneously capable of precise experimental study and quantitative 
theoretical analysis. 

In  order for a fluid to exhibit a Hadley cell and the subsequent instabilities, it is 
important only that the fluid be heated from the sides and experience Coriolis 
accelerations. Therefore, it is of interest to consider a fluid confined to a rotating 
annular region of square cross-section, the dimension of which is small compared 
to the distance from the centre of rotation so that curvature and centzifugal 
effects will be minimized. The side walls are to be held at different constant 
temperatures, and the top and bottom walls are to be thermally insulating. Four 
rigid walls allow the elimination of extraneous boundary effects. In  addition, the 
symmetry simplifies the physical situation and thereby reduces the mathematical 
complexity of its description. This model will be formalized in the next section. 

Previous theoretical studies (e.g. Davies 1956; Kuo 1956) relevant to the 
general experimental situation described above differ from that indicated here. 
The situations discussed have been more complicated. Moreover, because these 
studies were primarily concerned with the stability problem, simplifying mathe- 
matical assumptions were made about the symmetric rhgime, and the assumptions 
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used failed to bring boundary condition information into the final description. 
Aspects of the symmetric rhgime, such as internal temperature gradients, which 
are in fact determined by the boundary conditions, have been treated as free 
parameters in the stability problem. 

2. The mathematical model 
2.1. Desnitions and assumptions 

Consider a fluid contained between two coaxial cylinders and two parallel planes, 
the distance between the cylinders being equal to the distance between the planes. 
Let the container rotate with respect to an inertial system. The rotation vector, 
anti-parallel to gravity, coincides with the axis of the cylinders, both being normal 
to the planes (see figure 

FIGURE 2. The co-ordinate system. 

The fluid is thermally driven away from the state of solid rotation by an imposed 
horizontal temperature gradient, i.e. the inner and outer cylinders are held at 
different constant temperatures. The horizontal surfaces are thermally insulating. 

We use the following nomenclature: 
Co-ordinate vector with components (x,y,z). With respect to the 

cylinders, x is radial, y is azimuthal, z is vertical. x and y are also 
referred to as meridional and zonal 

Velocity with components (u, v, w )  
Deviation from hydrostatic pressure 
Temperature. N.B. The above symbols primed have dimensions, 

unprimed they are dimensionless 
Stream function for the velocity components in the x-z plane. N.B. 

v, T, Y! are also used with superscripts as coefficients in perturbation 
expansions 

Unit vectors in the (x, y, z) directions 
Acceleration due to gravity 
Coefficient of thermal expansion 
Fluid density 
Kinematic viscosity 
Thermometric conductivity 
Angular velocity of solid rotation 
Total horizontal temperature difference 
Radius of inner cylinder 
Side of square cross-section of annulus 
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The explicit assumptions defining the mathematical model applied to the 

(a)  A linear dependence of density on temperature alone as the equation of 
fluid system are: 

state: 
(2.1) p = ~ o [ l - a ( T ’ - T ~ ) ] .  

( b )  The coefficient of thermal expansion, a, of the fluidis takento bezeroexcept 
when coupled with the gravitational constant. This allows for the thermally 
induced gravitational force, but neglects all other effects of density variation. In  
particular the assumption is made of local incompressibility, 

V ’ . V ’  = 0.  (2.2) 

Assumptions (a) and ( b )  are frequently used in similar problems and are known as 
the Boussinesq Approximation. 

(c) Viscosity and thermal conductivity are constant. 
(d) Frictional dissipation is neglected in the energy equation, which becomes, 

KV’ZT’ - V’ . V’T’ = 0.  (2.3) 
using also ( b )  and (c), 

(e) The distance between the bounding cylinders is small compared to the 
radius of the inner cylinder, i.e. L/R < 1 .  This serves to eliminate curvature 
effects in the equations and implies a constant centrifugal term. 
(f) The centrifugal acceleration is much smaller than the gravitational 

acceleration, i.e. iYR/g 
Under these assumptions, the Navier-Stokes equations describing the sym- 

metric (a/ay’ E 0 )  steady @/at = 0) state take the form 

1. This is consistent with assumption (b )  above. 

- v V ’ 2 ~ ’  + V’ , V’V’ + 2 n  x V’ - agT’k +po1V’p’ = 0.  (2.4) 

Herep’ is the difference ?tween the actual pressure and a pressure which balances 
the constant terms po(gk - Q2RP). The symbolic operators, of course, are only 
two-dimensioial. 

Equations (2.2), (2.3) and (2.4) provide five equations for the three components 
of velocity, the temperature and the pressure. Specifying the necessary boundary 
conditions completes the exposition of the formal mathematical problem. On the 
four rigid walls, all velocity components must vanish, i.e. v’ = 0 at 2‘ = & +L, 
z’ = a +L. The condition of constant temperature on the vertical w d s  is taken as 
T’ = +L; and no transfer of heat across the horizontal walls 
implies aT’/az‘ = 0 at z’ = a +L. 

$(AT) at x‘ = 

2.2. The method of approximation 

Although in $ 1  the simplest physical problem for the symmetric circulation of a 
horizontally heated rotating fluid has been formally posed, it is still too difficult 
mathematically for direct solution. The equations are coupled, high order, non- 
linear partial differential equations. In  order to proceed, some approximate 
procedure must be adopted. 

Since any approximation will consist of arguments concerning relative orders 
of magnitude, it will be convenient to introduce non-dimensional variables and 
parameters at this point. Let r’ = Lr, 27’ = (AT) T ,  v’ = CV, and p‘ = c2po, 
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where c is an as yet undetermined velocity. When these variables are substituted 
into (2.4), it can be seen that the choice of c = q ( A T )  (2Q)-l will transform the 
terms 2Q x v' - agT'& into k x v - Tk,  i.e. into termshwhich are (non-dimen- 
sionally) of order unity. This is appropriate because Tk represents the driving 
iorce, and also because interest lies in the case where the constraint of rotation, 
k x v, is of the same order of magnitude. 

It is also convenient now to make use of the azimuthal symmetry in the con- 
tinuity equation (2.2), which becomes au/ax + awlax = 0. Thus it is possible to 
introduce a stream function for the velocity components in the x-z plane defhed 
by u = Y,, w = - Yx, subscripts denoting partial differentiation. The boundary 
conditions on the velocity now require that Y and its normal derivative be zero 
on all boundaries. 

Introducing the non-dimensional variables and the stream function, and sub- 
tracting after cross-differentiating the first and third components of (2.4) to 
eliminate the pressure, we obtain the remaining equations: 

- €V4Y + /3[Y,Yxzz + YzYxXx - YxYmz - Y,Y,,,] - V, + T, = 0, (2.5) 
- E V ~ W + ~ [ Y ~ V , - Y ~ V ~ ] + Y ~  = 0, (2.6) 

- E V ~ T + ~ ~ [ Y ~ T ! , - Y ~ T J  = 0, (2.7) 

where E = ~(252) -~L-~  is the reciprocal square-root of a Taylor number, 
p = ag(AT) (252)-2L-1 is a thermal Rossby number, and u = V K - ~  is the Prandtl 
number. 

The lower symmetric regime is characterized by small total temperature 
difference and, in the range of interest where instabilities are known to occur in 
related experiments, by moderately strong rotation rates; thus this regime is 
associated with small values of /3 and E .  We now assume that /3 < 1, E < 1, and 

= O(l) ,  but since these properties of the parameters are used to develop 
approximate solutions, more explicit limitations on their magnitudes will be 
found later. 

Ordinary perturbation expansions in /3 of all the variables can now be made, 
i.e. m m m 

\r = x pnY(@, v = 2 pnv(n), T = /3nT(n). 
n=O n=O n=O 

A single superscript (a) denotes the nth order p-expansion coefficient for the 
variable on which it appears. The expansions are inserted into equations ( 2 4 ,  
(2.6) and (2.7), and terms of order /3n are collected. 

The terms of zero order give: 

The terms of first order give: 
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and so on. Each YCfl) separately satisfies the boundary conditions on Y. T(O 
satisfies the non-dimensional condition T(0) = 3 at x = 4, T(fl) = 0 at x = & 8 
for ?z > 0. At z = f 4, TLfl’ = 0 for all n. 

From the form of these equations, the role of /? in the heat equation, aa a 
measure of the relative importance of conduction and convection in determining 
the temperature distribution, is made clear. Small /3 means that conduction 
effects are important. The zero-order temperature is in fact determined entirely 
by conduction, and thus is not coupled to the zero-order velocity. This tempera- 
ture distribution then acts as the forcing term for the coupled zero-order velocity 
equations (2.8) and (2.9). Next, the first-order temperature is determined by 
conduction balancing advection of the zero-order temperature field by the zero- 
order velocities. Similarly, to any order in /3, the temperature is first determined, 
by conduction, from a Poisson equation in which the inhomogeneity consists of 
advections of lower-order temperatures by lower-order velocities. The known 
temperature then appears as an inhomogeneity in the coupled velocity equations 
of the same order, which are also forced by lower-order momentum advections. 
The latter will be found to be relatively unimportant. 

The mathematical difficulties have now been considerably lessened. All the 
equations have been linearized, and the heat equation has been reduced to a 
simple standard form. However, the coupled velocity equations are not simple, 
and it will be worthwhile to exploit the fact that e is small in their solution. Since 
e multiplies the highest order differentiated terms in each equation, a direct 
expansion in this parameter is not permissible. If this were done, the order of the 
equations would be lowered and the boundary conditions could not be satisfied. 
Singular perturbation theory or boundary-layer analysis must be used (see 
Carrier, 1953).t 

The highest-order differentiated terms can contribute only when they are 
large enough to overcome the small factor 8. Extreme changes of the velocity 
functions and their derivatives are not expected over the main body of the fluid, 
but can occur near the boundaries, where viscous effects are important.Therefore 
solutions of approximate equations of low order will be tolerated in the interior of 
the fluid only. Near each boundary additional contributions to the solutions will 
appear; these additional contributions will satisfy approximate equations of 
higher order, and together with the interior solutions will satisfy all boundary 
conditions. 

Since the zero-order velocities are expected to have a boundary-layer character, 
and these velocities force the first-order temperature, it is expected that first- and 
higher-order temperatures will also exhibit boundary-layer effects. It is pertinent 
to notice that in equation (2.13) the same small parameter 8 also couples the 
highest-order differentiated terms in the temperature. 

In  the next section, solutions for the lower symmetric regime will be obtained 
by the double perturbation procedure outlined above. 

t This reference should be consulted for any questions in standard boundary-layer 
techniques which are employed in the following malysb. 



The symmetric state of a rotating fluid 607 

3* Andysis and results 3.1. The zero order 

The zero-order temperature may be trivially obtained from equation (2.10) 
because of the particularly simple boundary conditions imposed. Thus 

T(O)(x, 2 )  = x, (3.1) 

and Tg) = 1 is to be inserted into (2.8). 
Treating (2.8) and (2.9) M a boundary-layer problem, we must first determine 

the boundary-layer widths and the amplitudes as functions of 6. Since the 
equations are linear, the boundary-layer widths, or more precisely the charac- 
teristic lengths normal to the boundaries in which the highly differentiated terms 
contribute, can be determined independently of amplitude considerations. This 
is done most simply by considering the single equation satisfied by either Y(O) or 
v(O) alone, e.g. 

which is obtained by cross-differentiation. 
Scaled normal co-ordinates are defined near each of the boundaries by 

6 = e a ( x + 4 )  near z = - 4  and 6 = 8 ( z + + )  near x = - +. The exponents a and b 
will be determined by deriving appropriate approximate equations for the con- 
tributions near each wall from (3.2). Negative values are anticipated so that 
( and [will be stretched co-ordinates, i.e. a large change in ( will be equivalent to 
a small change in x. Equation (3.2) is now rewritten in terms of ( and z ,  and x and 6 
as independent variables. The derivatives a/ax and a/& are expressed as ~-~ (a /a [ )  
and ~-~(a/a[ )  respectively. The assumption that Y(0) is smooth, i.e. the function 
itself and all its derivatives are bounded above by order unity, is made. The 
equations can then be ordered with respect to E as a small quantity. To perform 
the ordering, the highest term of V6 is required in each case to balance the rota- 
tional constraint, the last term in (3.2). This procedure yields a = - $, b = - +, 
and the approximate equations 

€2V6Y(O) + vz = 0, (3.2) 

Y2kcEr +Y!$ = 0, near x = - 4, (3.3) 

Y&c66 +YF' = 0, near z = - 4. (3.4) 

The &st neglected terms in (3.3) are O(d), and in (3.4) are O(s). 
The same equations in similarly defined stretched co-ordinates will pertain 

near x = +, z = 4. It will be noticed that the side-wall boundary layers, of width 
O(d), are broader than the top and bottom boundary layers, of width O(&. The 
approach adopted here will, of course, break down in the corner regions where 
none of the approximations are valid. However, these regions are small and 
relatively unimportant. The vertical and horizontal boundary layers wiU be 
mutually consistent because they will uniquely satisfy, when added to the same 
interior solution, boundary conditions along their respective walls. 

To determine the'amplitudes of the contributions to the fields in the separate 
regions, it is necessary to return to the coupled equations which also contain the 
forcing inhomogeneity. It is convenient to transfer the inhomogeneity into the 
boundary conditions. This is readily done by extracting the particular solution 
with the substitution do) = z + @. The boundary conditions change to 4;) = - z 
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at x = f +; vf" = T 4 at z = & +. The particular solution is recognized as the 
geostrophic thermal wind, well known in meteorology. To isolate the dependence 
of the amplitudes on E ,  let 

Y ( O )  = A ( € )  $@I, vf') = B(s) do), in the interior; 

(,)Y(O) = Al(~)(l)$(0), (,)vf') = B,(s)(,)w@), near the vertical wall; 

(9Y(o) = A,(s)(,)@O), (&O) = B,(E)(#), near the horizoRta1 wall. 

For convenience the boundary-layer region near the vertical wall will hereafter be 
referred to as region 1, and that near the horizontal wall as region 2. A lower left- 
hand subscript on a variable refers to the region. ( i ) q O )  and (i)v(0) are assumed to be 
independent of s, and to be smooth in their arguments. The above expressions are 
now substituted into the approximate forms of (2.8) and (2.9), using the scaling 
information obtained above, yielding: 

In  the interior: BVLO) = 0, (3.5) 

A$Lo) = 0. (3.6) 

In  region 1: €-*A, (,)@kt + Bl ,,do) = 0, (3.7) 

E*B, (,)t@ - A ,  (o$$?' = 0. (3.8) 
In  region 2: c ~ A ,  (.&& + d B 2  (9.p) = 0, (3.9) 

B, (,)vf'' - A ,  E-* (&p) = 0. (3.10) 

These homogeneous equations? yield relationships between the amplitudes of 
Y ( O )  and vr), which are required to make all terms in a given equation consistently 
the same order in e. 

The interior equations contain no amplitude information. However, the 
boundary-layer equations (3.7) and (3.8) give, consistently, 

A ,  = dB,, 
A ,  = dB,. and, (3.9) and (3.10), 

(3.11) 

(3.12) 

The boundary conditions further require that at least part of vf' be of order 

(3.13) unity near each wall; thus Bl = (A,  = E ) ) ,  

B, = 1 (A,  = d) ,  (3.14) 

in the appropriate regions. If relationships (3.13) and (3.14) had happened to be 
identical, it would have been relatively simple to proceed from this point. Since 
they are not, further argument is necessary. 

The only factor affecting amplitudes not contained in the above general state- 
ments is the requirement that the boundary conditions be satisfied by the 
boundary-layer contributions near each wall added to the same interior solution. 
In the formal expansion which is being evolved here, boundary conditions must of 
course be separately satisfied by all orders in E .  Thus amplitudes in one region 
strongly influence amplitudes in another region. In  considering the effect of the 

t The homogeneous equations are dehitely correct for the contributions, of lowest 
order in E,  to $(O) and do) in each region. The equations for higher-order terms may be 
modified by the appearance of inhomogeneities in the form of the neglected parts of V' 
and Va operating on the lower-order fields. 
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application of both vertical and horizontal wall boundary Conditions on the 
amplitude problem, certain particular properties of the solutions to the governing 
equations (3.63.10) are necessary and will now be derived. These equations are 
taken as independent of B and solved under the auxiliaryrestrictions (3.11,3.12). 

The interior equations (3.5, 3.6) integrate immediately to 

(3.15) 

(3.16) 

The boundary-layer equations in region 2, (3.9,3.10),+ can be treated as ordinary 
equations (with constant coefficients) in cwith x-dependent integration constants. 
Rejecting solutions which do not approach zero asymptotically in 5, and requiring 
the normal derivative of (.#O) to vanish on the wall, we fhd  the solutions to be 

(3.17) 

and (,)do) = - 4 2  G(z) e-9q2 cos c/42. (3.18) 

Thus at 5 = 0, (,P) = G@),  (3.19) 

and = - 4 2  G(x).  (3.20) 

Near the top boundary, let c* = E-)(z - +); then the form of equations (3.9,3.10) is 
reproduced in c* under the transformation 

(&(O) = G(z) e-c/q2(sin c/42 + cos [/42), 

6 -+ - g*, (&w + (9p), (&O) -+ - (&do) .  

Thus along the top wall, (9e0) = G*(x), (3.21) 

and (ado) = 4 2  a*(%). (3.22) 

Those properties of the solutions which have been obtained now enable the 
amplitude argument to be concluded. The boundary conditions require that 
values of vf) of order unity exist in both regions 1 and 2, i.e. the existence of B, = 1 
and B, = 1. In  turn, the amplitude consistency relations (3.16,3.16) then require 
A,  = E* and A,  = €4 in their respective regions. A boundary-layer contribution 
to Yo) which will add to an interior contribution to give a zero stream function on 
the walls forces the amplitude of the interior stream function, i.e. requires 
definite values of A .  Since the amplitudes of Y(0)required in the different boundary 
layers by the above arguments are not of the same order in B ,  they cannot simply 
add together with the same interior solution. 

To proceed, it would seem necessary to require contributions to the interior 
Yo) of both amplitudes, i.e. to have in the interior W0) = E * ~ ~ * ~ ) + E * ~ ~ * ~ ) +  .. .. 
(Hereafter when two superscripts are used the first will refer to the order in /3 and 
the second to the order in E .  A single superscript will continue to refer to the 
order in 8.) However, the appearance of an amplitude of Y(O) in the interior 
further requires the same amplitude in the boundary layer other than whence it 
originated. E.g. A,  = E* implies A = B* which in turn implies A ,  = E*, etc. 

Invoking again the amplitude consistency relationships (3.11,3.12), we see that 
A ,  = E* requires a contribution to of B, = E-*. This in turn would carry a 

t These equationa me controlled by the rotational constraint in a manner &st noticed by 
Ekman (1906) while considering the effect of the wind stress on the ocean. 

39 Fluid Mech. 6 
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vt’ of order s-* through the interior and into the side-wall boundary layer. Thus 
the fact that (3.11) and (3.12) differ would generate, indefinitely, further ampli- 
tudes of both Yo) and vp) in all three regions. 

The possibility of simplification arises only if one of the originally required 
contributions to Y?O) satisfies the boundary conditions by itself at the wall of the 
boundary-layer region in which it necessarily exists. Note that this is physically 
interpreted as allowing for the possibility of a boundary-layer .counter-current. 
If either (&@I*) = 0 at E = 0 or (2)@0’f) = 0 at  = 0, a contribution of the same 
amplitude from the interior, etc., is not required. Finally, the properties of 
&(O**) revealed in (3.17, 3.19) show that t2)fl.(Oph) cannot be zero at g = 0. Such a 
requirement would force (.&(OJ~) to be identically zero everywhere in region 2, 
which is impossible. 

However, it will be seen that (&(O**) can meet this requirement in region 1. 
Therefore, the following problem is formulated as being the simplest consistent 
with the full amplitude and scaling requirements. The unique and unambiguous 
results obtained below indicate that it is the correct boundary-layer problem 
associated with equations (2.8, 2.9), and therefore provides formal approximate 
solutions to these equations. 

In  the interior and in region 2, near the horizontal wall, the stream function is 
O(&) and the zonal velocity is O( l), A = A ,  = €4, and B = B, = 1. The boundary 
conditionsatz = - iareappliedtoY(0) = d ( f l . ( O * * )  + (,)fl.(o~”’)andv’’) = ~ ( 0 ~ 0 )  + (&O*O), 

and similarly at z = + 4. Near the vertical wall in region 1, two amplitudes of the 
stream function and two amplitudes of the zonal velocity arerequired, A ,  = e* and 
€4, and B, = 1 and e*, i.e. = d (,&@$*) + €4 = (dv(o9 0) + E* (dv(O* 4). 
Each set (u@o*#), (dw(O.o) and ( , y , H o 9 * ) ,  (uw(O~*) separately satisfies equations (3.7, 3.8). 
The boundary conditions at x = - 4  are @o**)+(l)@09*) = 0, (dfl.(O?*) = 0, 
v ( O ~ O ) + ( ~ v ( O ~ O )  = -2, cflv(O,*) = 0. These boundary conditions are symmetrical in x, 
and introducing near x = ++ the variable 5” = e-*(x-+), the form of (3.7, 3.8) 
is reproduced in (* under the transformation 5 --f - f ;* .  Thus solutions near x = 4 
.are immediately available from those at x = - 4. 

Applying the boundary conditions at the top and bottom walls to the solution 
(3.15, 3.16, 3.19-3.22), weobtain 

G(x)  + g ( 4  = 0, 

G*(x) + g ( x )  = 0, 

*), 

- 4 2  G(x)  +f (x) = - 4, 
4 2  U*(x)  +f(4 = + 8, 

which have the solutions 

(3.23) 

and f ( x )  = 0. (3.24) 

Thus the total zero order interior velocity is purely the geostrophic thermal wind. 
The velocity in the 2-2 plane, the vertical and meridional flow, is identically zero 
to this order in e and p. 

It remains to find the solutions near the side walls. The boundary conditions 
are now further specifiedin terms of equations (3.23,3.24) asoyVo*f) = - 1/(242), 
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(l)w(o~o) = - z. With the conditions imposed, the solutions are most readily obtained 
in terms of Fourier series in the vertical co-ordinate, the Fourier coefficients being 
explicit functions of the boundary-layer co-ordinate. Separated solutions of the 

constant coefficient equations (3.7, 3.8) exist of the form exp {(k2)h6) cos kz, and 

the boundary conditions can be applied in terms of well-known square wave and 
sawtooth Fourier series. The solutions are 

sin 

+ 4 exp { - [(2n + 1) TI*} 43 

x ( -)n+1sin(2n+ 1)nz, (3.26). 
and 

xexp{-[(2n+l)n]*}- sin[(2n+ l)n]*-6 (-)nf1sin(2n+1)nz. (3.28) 

These results are plotted and discussed more fully in $3.4 below. O + O * * )  repre- 
sents a flow up the hot wall and down the cold wall, the streamlines of the flow are 
bowed out from the wall, the maximum bowing occurring at the mid-point of the 
wall. AU the mass transport in the side boundary layers is associated with (*+O**). 

( , $ ( O J ~ )  represents a narrow circulating cell of velocity confined to the vertical wall 
boundary layers.? This is an interesting unanticipated result directly related to 
the rotational constraint. 

3.2. TheJirst order 
The first-order temperature calculation is of particular interest because it contains 
the first modifications of the temperature from that governed purely by con- 
duction. In  physical situations where the perturbation calculations evolved here 
are expected to be useful, the observable temperature will be the temperature 
through first order in /3. Thus the vertical temperature gradient of importance to 
the anticipated stability problem will be a result of this calculation. 

f Note added in proof. From a consideration of the asymptotic form of the exact 
solution to equation (3.2), a single contribution to this cell of width e* is found. Thus 

is partly spurious. This failure of boundary-layer analysis is discussed more fully 
elsewhere (Carrier & Robinson, to be published). It corresponds solely to a modification 
of the non-mass-transporting cell confined to the side-wall boundary layer. No other 
results are affected. For an example of the appearance of an ef contribution in a similes 
problem, see Stewestson (1957). 

Y 2 43 2 1 

39-2 
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The zero-order convection terms in (2.13) forcing the first-order temperature 
can be evaluated from the results of the preceding section. Since TLo) = 0 and 
Tg) = 1 everywhere, the last term of (2.13) is identically zero and T(l) is deter- 
mined by the equation - ev2(a-1~(1)) + y“;’ = 0. (3.29) 

On comparison with equation (2.9) for the zero-order zonal velocity, do), (3.29) 
is seen to be identical with a-lT(1) replacing d o ) .  Therefore a particular solution of 
(3.29) is Tg’ = ado). As anticipated, this contribution to the temperature forms 
strong boundary layers. With respect to e, !Z‘g) is O(1) everywhere with an 
additional contribution O(d) near the constant temperature side walls, region 1. 

To preserve the physical conditions on the total temperature, the &&-order 
temperature at the walls must obey the conditions T(l) = 0 at x = & 3; aT(l)/az = 0 
at z = & 4. Since d o )  is zero on all walls, the first condition is obeyed by TF’, but 
the second condition is not. From (3.18) and (3.23), 

to the lowest order in e. TE) is antisymmetric in z ;  therefore 

also. Thus homogeneous solutions to (3.29) must contribute to T(l), and must 
satisfy the boundary conditions 

€-)a a 
Tf)=O a t  x = ~ J ;  -TT‘,1’=+- 

ax 2 4 2  
at z = & 3. 

Since T f )  satisfies the homogeneous Laplace equation, it cannot form boundary 
layers, i.e. have extremely sharp gradients near the walls. Therefore the condition 
in eon the gradient of T f )  on the top and bottom walls must be taken as a condition 
on the amplitude of T f )  everywhere. Thus Tg)(x, z )  = aAT(l.-*)(x,z), where 
V2T(l*-*) = 0. Since the temperature T(S-*) is e-* larger than the directly con- 
vected temperature T$) = T(1~0), then T(l*-*) will be the observed temperature. 
Thus in this case, the vertical temperature distribution is primarily set directly by 
conduction, but is, nevertheless, implicitly controlled by convective processes. 
Conduction acts to maintain the physical boundary conditions disturbed by 
convection. 

Anticipating the first-order velocity calculation to be forced by this temperature 
distribution, it is most convenient to obtain T(l?-*) as a Fourier series in the 
vertical co-ordinate. This is readily done by applying a finite Fourier transform. 

The isotherms of this temperature distribution plotted in 53.4 are seen to be 
almost horizontal over the main body of the fluid. Thus the isotherms of the total 
temperature, to first order, will be tilted away from the vertical zero-order con- 
duction isotherms. The shape of the tilted isotherms is given by the purely 
numerical function a-lT(l*--*). The magnitude of the deviation from the pure con- 
duction temperature is conveniently expressed by the multiplicative factor @a. 
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To obtain the first-order velocities, equations (2.12, 2.13) are employed. 
A boundary-layer analysis entirely similar to that used in solving the zero-order 
equations (2.8, 2.9) can be used, even in the presence of the more complicated 
inhomogeneous terms now present. The inhomogeneous forcing terms consist of 
zero-order inertial terms and the first-order horizontal temperature gradient. 
From the zero-order solutions, the inertisl terms in (2.11, 2.12) are found to be 
identically zero except near the side walls. In  region 1, the inertid terms in (2.1 1) 
are at most O(E-*), and in (2.12) at most O(1). The contributions to Y(l) and v(l) 
forced by these terms will be of lower order in E than the contributions forced by 
Tg) considered below, and may therefore be formally neglected. 
Since the equations are linear, the contributions to the velocities from T(lv-8 

and T(pl) may be dealt with separately. Considering first T(l*-*), from (3.31) the 
corresponding particular solution to (2.11, 2.12) is obtained, 

Since cos ( k (2n-1- 1) +r) = 0, v(l*-*) satisfies boundary conditions at z = k 4, no 
additional boundary layer contributions being necessary. However, boundary 
layers are necessary at the side walls, since &-*) given by (3.32) does notsatisfy 
the boundary conditions at x = i +. A boundary-layer contribution to the zonal 
velocity implies a related contribution to the stream function. By (3.11), (l)yW~-#) 
is found to be required by c&*-b. These fields together must satisfy (3.7, 3.8). 
The appropriate boundary conditions at 6 = 0 are 

(&(1, -Q) = 0, (&l. -4) = - - fJ Jz 5 an cos (2n + 1) nz, 
n2 ,=O 

where, by (3.32), 

a, = (-)"sinh(2n+ 1) ( -  Qn) cash (2n+ 1) i n ( 2 n +  1)-'. (3.33) 

The solutions are 

43 2 11 x 4 3  cos [(2n + 1) n]+ 4 3  - 5 + sin [(2n + 1) TI+- 5 cos (2n + 1) nz, (3.34) ( 2 

+sin [ ( ~ n  + 1) TI+- 6 sin (2% + 1) nz. (3.35) 
43 2 11 

The existence of these boundary-layer solutions indicates that the zonal velocity 
as given by (3.32) is the correct total dl) for the interior of the fluid. Isolines of 
v(l>-*) are seen in 93.4 to be essentially horizontal. Thus the zonal velocity v, to 
first order, will be tilted away from the purely horizontal zero-order thermal wind 
by v(1. -*), much as the first-order temperature is tilted from the vertical by T(lt -*). 

The stream function (l+,M1* -8) given by (3.35) is associated with two narrow cells 
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of velocity confined to each side-wall boundary-layer region, one extending from 
z = - +to z = 0, and the other from z = 0 to z = + 4. 1 , H l 9  exists only in region 1 
and is consistently associated with no net mass transport. The additional con- 
tributions to the first-order velocities forced by T$j can be seen also to exist only 
in region 1, and therefore not to affect net transports. In  region 1, TgL = O(6-t) 
and will only force amplitudes of YW and v(l) smaller than those already calcul- 
lated. However, these velocities are at best of interest only per se; -and the 
involved calculations will not be performed. The results given by (3.34, 3.35) 
were obtained because they were necessary to establish the results for the first- 
order velocity in the interior. 

3.3. Range of validity of the theory 

It is of course impossible to prove and to define the range of the convergence of the 
double perturbation expansions for the solutions with mathematical rigour. It is, 
however, useful and necessary to place plausible restrictions on the applicability 
of the theory. This will be done in terms of the magnitude of the largest neglected 
terms. Therefore, although no detailed calculations of the complicated second- 
order fields will be made, an examination of the magnitude of the second-order 
temperature is given. 

The equation for the second-order temperature is found to be 

- ,cVZT(z) + (T(T~O)T(~) - T(O)T(f) 0 2  + '$Nl)T(O) 2 2  - '$"Z)T$O)) = 0. (3.36) 

The last term will be zero everywhere, since Tio) = 0. The remaining convection 
terms are also zero in the interior, since the interior stream function, though f i s t  
order, remains constant; conduction alone still determines the interior tempera- 
ture through second-order terms. In each boundary layer, expanding the con- 
vection terms in E yields many contributions to F2) differing only by terms 
O ( d ) .  Note that convection terms involving the vertical gradient of the tem- 
perature, which were identically zero in the first-order temperature equation, 
appear in (3.36). However, all the amplitudes of T(@ required for the particular 
solution to (3.36) are found to be of higher order in E than the homogeneous solution 
required to satisfy the insulating condition along the top and bottom walls. This 
is precisely similar to the first-order result. 

The amplitude of F2) thus required is O ( E - ~ ) ,  N.B. PZe-l = (PC--%)~. The s-inde- 
pendent amplitude of T(2*--1) is determined by the condition on the gradient at 
z = - 4, which is 

(3.37) 

The right-hand side of (3.37) is a known function of x. In  order to obtain a 
numerical estimate of the amplitude of P2*-l), the absolute value of (3.37) is 
averaged over x, yielding 

(3.38) 

The order unity quantity in (3.38) is found from (3.31), or from figure 6, to be 
approximately Q .  
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This result indicates that the critical parameter for the double expansion 
procedure is actually 

h = ( ~ J ~ ) - ~ C T / ? E - *  = (242)-1ag(AT) v * K - ~ ( ~ Q ) - * .  (3.39) 

Thus convergence is indicated for h < 1. To make second-order terms less than 
10 % of first-order terms, h2 = (0.36)2(~/?e-*)2 < 0.1, i.e. a/?e-* may be only 
slightly less than 1. A safe restriction to indicate that the fist-order fields are 
correct to 10 % is a/?€-* < 2. 

The original restriction p < 1, e < 1 must of course still be retained. Now that 
boundary-layer widths are known in terms of e, further restrictions may be 
placed on this parameter. Requiring that the broad side-wall boundary layers be 
less than 15 % of the total non-dimensional distance, we must have €4 < 0.15, 
i.e. E < 3 x 

In  summary, the limitations are 

p < 1, B < 3~ 10-3, ape-* < 2. (3.40) 

For a given fluid (v ) ,  in a given geometrical situation (L) ,  a minimum bound on e 
(maximum bound on Q), may be obtained to maintain the validity of the original 
assumption, (f ), of negligible centrifugal effects. The range of parameters allowed 
by these considerations indicates that the first-order theory should be valid for 
the lower symmetric regime in most situations attainable in the laboratory (see 

3.4. Results 
The lower symmetric regime of a horizontally heated rotating fluid, confined to 
a square cross-section annulus whose dimensions are small compared to the 
distance from the centre of rotation, has been discussed. The solutions for the 
non-linearly coupled temperature and velocity fields have been obtained by first 
expanding in the thermal Rossby number, /? = ag(AT) (2Q)-2L-1, and then, to 
each order in p, performing boundary-layer analysis with respect to the reciprocal 
of the Taylor number squared, E = ~ ( 2 ! 2 ) - l L - ~ .  

In  the range of parameters appropriate to this procedure, it has been seen that 
the non-linear convective terms in the heat equation significantly control the 
development of the fields, while the non-linear momentum advections (the 
inertial terms in the Navier-Stokes equations) are negligible. Because of the 
perturbation analyses the parameters /? and e do not appear in the approximate 
equations, which contain only the Prandtl number, tr = Y K - ~ .  Since inertial terms 
are negligible, CT appears only as a factor in the amplitude of all fields of higher 
/?-order than zero. The mathematical problem solved is the same as that which 
would have arisen had the assumptions been made that /? = 0, (/?a) 9 0, with an 
accompanying expansion in /?cT. This would be a valid approach for a > 1, as it is 
for laboratory experiments with water. However, the approach actually used is 
more revealing in that the effects of the inertial terms are examined and the 
modifications occurring from their inclusion can be estimated in terms of E and Q. 

The theory will be most useful when the conditions (3.40) are satisfied. We 
then have that the temperature and zonal velocity are described by terms up to 
first order in /?- The boundary-layer velocities are adeque ly  described by the 

Fultz 1956, p. B-84). 
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zero-order terms in /9, first-order effects being entirely confined to internal 
modifications in the side-wall boundary regions. The meridional and vertical 
velocity components are identically zero in the interior up to the first order. 

The dependence on P,E and c has been extracted so that these parameters 
determine only amplitudes and scaled co-ordinates. Thus, except for scaling, the 
results of any particular experiment are fully described in terms of functions 
devoid of physical dimensions. Figures 3-8 are graphs of the numerical functions 
most useful for comparison with experiment. 

The zero-order side-wall boundary-layer vertical and meridional velocity 
streamlines, from the expressions (3.26, 3.27), are shown in figures 3 and 4. The 
streamline distortion associated with (Q@ol*) is a result of Coriolis effects as well as 
the appearance of the additional cell implied by (l&@~*). The total zero-order 
streamlines are a linear superposition of these two contributions, 

(l)@ 0) - - €* (1) p ’ 8 + ~ * ( Q @ o ~ * ) .  

The cell velocity strengthens, the mass-transporting velocity near the wall and 
weakens it away from the wall. The extra factor of €4 tends to make 
dominant, but from figures 3 and 4 the purely numerical amplitude of (l)@os*) 

5 
0 0 L 

FIGTJRE 3. Streamlines FIGURE 4. Streamlines 
of (l,@(O.+,. of ( l ) p O ’ t ) .  

is seen to be less than that of (l)$(o-*). Thus for low rotation rates (large E ) ,  the 
counter current associated with ~ l & ( O ~ * )  may or may not be observable, but it 
definitely wiU be observable for large rotation rates. The boundary-layer stream- 
lines along the top and bottom walls are straight lines given by (3.17) and (3.23). 

The zonal velocity would of course vanish if there were no rotation. The relation 
of the zonal velocity to Coriolis effects is easily seen in the zero-order results. In  
the top and bottom boundary layers where the cross-rotation-lines meridional 
velocity is the largest, the velocity-dependent Coriolis accelerations are the 
largest and the zonal velocity attains its maximum and minimum values. In  the 
interior, the pressure balances the Coriolis accelerations due to the zonal velocity 
together with the thermally induced gravitational body force. In  order for the 
interior pressure to do this consistently, the vertical zonal velocity gradient must 
equal the horizontal temperature gradient; this is the thermal wind relationship. 
Consistent with the zero-order linear horizontal conduction temperature is a zero- 
order linear vertical zonal velocity distribution. The contributions to the zero- 
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order zonal velocity in the side-wall boundary layers, (l)v(o) = (l)v(o*o) + d are 
given by (3.26, 3.28) and are shown in figures 5 and 6. 

The observable first-order temperature haa been found to be directly set by 
conduction, although it satisfies boundary conditions determined by the &st 
effects of convection. This temperature, T(1.-*), is given by (3.31) and shown in 
figure 7. T(l9 -4) predominantly governs the vertical temperature structure. 
Therefore the actual vertical temperature gradient of interest to the stability 
problem is seen to be proportional to (aghc-1) L-1(AT)2 !2-# degrees Centigrade 

0- 

of (l)v(o.o). 

0 1 2 5  
FIGURE 5. Isolines 
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FIGURE 7. Isotherms 
of g-lT(l,-)). 
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FIGURE 0. Isolines 

FIGURE 8. Isolines 
of g-’v (1,4 ). 

per centimetre; this is a second-order effect in the temperature difference, and 
varies with the inverse three-halves power of the rotation rate. Figure 8 shows 
the first-order zonal velocity consistent with T(l*-*) given by (3.32). 

The macroscopic quantity of greatest physical interest which characterizes the 
system is the total heat transport. A measure of this quantity is the integrated 
normal temperature gradient along either of the constant temperature side walls. 
Internally, the fluid transports the heat injected at the hot wall both by con- 
duction and by convection in the boundary-layered velocity cell. A priori, one 
would suppose that the fluid system would be a more efficient total heat trans- 
porter than a solid system of identical geometry and conductivity. However, to 
first order this is not so. Because of the vertical asymmetry of the first-order 

temperature [equations (3.26, 3.28, 3.31)], f +,z )dz  = 0, and the 

macroscopic heat transfer does not differ from the purely conductive zero-order 
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transport. However, the first-order effects redistribute the gradient along the 
walls so that the effective heat source is lowered at the hot wall and the effective 
sink is raised at the cold wall. The second-order temperature will not possess the 
vertical asymmetry of the first order and willmodify the heat transport, but forthe 
range of parameters considered above, this will be a very small effect. 

3.5. Concluding remarks 
The relation to experiment. Unfortunately, at the present time there exist no 
experiments with which the theory can be quantitatively compared. However, 
such experiments are planned for the near future in the rotating tank laboratory 
at the Woods Hole Oceanographic Institution under the direction of Dr Alan 
Faller. An apparatus has been designed for experiments with horizontal heating 
of a rotating fluid. The design is such that precise and unambiguous descriptions 
of the various regimes and their instabilities can be obtained, and also such that 
comparison with the theory initiated here will be possible. An annulus of 8 cm 
square cross-section is mounted on a rotating platform approximately 1 m from 
the centre of rotation. The side walls of the annulus are copper, the bottom is 
plywood and the top is plexiglass. Horizontal temperature contrasts from 6 "C 
upward can be maintained by constant-temperature baths; the rotation rate is 
continuously variable up to well over 1 rad/s. The working fluid is water. 

In  pilot experiments with this apparatus the lower symmetric regime has been 
found to exist for values of AT c 0.2 - 0.3 "C. Thus a sample point conveniently 
attainable experimentally and well within the convergence of the theory is 

For water at 25 "C, 
AT = O.lO"C, Q = 1.Osec-1. 

a = 2.62 x lo4 "C -l, v = 8-96 x om2. sec-l and CT = 6-28. 

For L = 8 cm. and g = 980 cm = 8-0 x lo", 6 = 0.70 x and 
Bm-f = 0-60. In  figures 9 and 10 the temperature distribution over the body 
of the fluid and the streamlines in the side-wall boundary layer are shown at 
these values of the parameters. 

The boundary conditions. It is interesting to  note the relative role played by the 
boundary conditions along the vertical and the horizontal surfaces in controlling 
the behaviour of the system. The imposed horizontal gradient does drive the 
system, but otherwise the details of the evolved fields are strongly controlled by 
the conditions along the top and bottom walls. More precisely, after the zero- 
order temperature calculation, a consideration of the side-wall boundary region 
was the last step in the calculation of any field, and was done consistently with the 
requirements from the interior and horizontal boundary-layer region. The fact 
that (in this range of Rossby and Taylor numbers) the details of the side-wall 
boundary layers do not affect the fields in the other regions is of vital interest to 
the philosophical question of the validity of modelling the atmosphere in a 
laboratory tank. The side walls, which cannot be eliminated or made non-rigid, 
are the most artificial aspect of the modelling. 

On the other hand, the influence of the horizontal wall boundary conditions on 
the velocity and temperature throughout the fluid is strong. The counter-current 
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along the side walls has been traced to the rotational constraint manifest in the 
lack of freedom in the solutions of the horizontal boundary-layer equations after 
application of boundary conditions at  the top and bottom walls. There may be 
other situations of geophysical interest where a counter current along one 
boundary, not at all associated with the mass-transporting flow, is intimately 
connected with the detailed conditions along another boundary. 

FIUIJRE 9. Isotherms, E = 0.7 x lo4, 
p = B x 104, u = 6.3. 
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FIUURE 10. Side-wall boundary-layer stream- 

lines,~ = 7 x 104,B= 8 x lo4, u = 6.3. 

The temperature distribution to first and higher orders has been seen to be 
dominated by the insulating condition on the horizontal walls. A change of 
temperature boundary conditions along the top and bottom walls would there- 
fore markedly alter all results, e.g. ifthe condition were placed on the temperature 
itself instead of on the temperature gradient, the amplitude of the first-order 
temperature and therefore of the interior vertical gradient would be O(p), not 
0(/3e-t), as has been found. A detailed consideration of a change of boundary 
conditions (on the vertical walls as well) would be of interest. The resulting 
mathematical problems could be readily treated by the technique developed here. 
The problem resulting from changing the vertical surfaces from perfectly in- 
sulating to perfectly conducting is essentially included in the above work. The 
temperature along the top and bottom walls would then be a linear function of 
the horizontal co-ordinate between the hot and cold wall temperatures. The first- 
order temperature would be entirely given by the particular solution, Tgi, of 
0 2, which was entirely obscured-in the homogeneous solution, Z'(l*-t). 

It is a pleasure to thank Professor George F. Carrier for his very valuable advice 
and criticism. I should also like to thank both Dr Willem V. R. Malkus, who 
suggested the problem, and Dr George Veronis for many interesting discussions. 
The material presented here is part of a doctoral thesis presented to the Depart- 
ment of Physics, Harvard University. I should like to thank the Woods Hole 
Oceanographic Institution for fellowships held during the time of this research. 
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CORRIGENDA 

‘Cellular convection with finite amplitude in a rotating system.’ 
( J .  Fluid Mech. 5, 1959, 401.) 

I n  the discussion following equation (2.21) it is incorrectly stated that 
overstability cannot occur when the Prandtl number u exceeds the value 48. 
As Prof. Chandrasekhar has pointed out to me, the Rayleigh number in the 
overstable case has no minimum for u > J$, but it is certainly possible for 
equation (2.20) to be satisfied for this range of u. As long as cr < 1 there always 
exist values of a2 for which equation (2.20) can be satisfied. 

I neglected to include in the bibliography the reference to: 

CHANDRASEKHAR, S. & ELBERT, D. D. 1955 The instability of a layer of fluid heated 

This investigation treated the stability problem with rigid boundaries for 
the overstable motions. Figure 5 of my paper is the same as figure 1 in 

G .  VERONIS Chandrasekhar & Elbert for the range cr < 0.677. 

below and subject to Coriolis forces. 11. Proc. Roy. SOC. A, 231, 198. 

‘Energy content and ionization level in an argon gas jet heated by 
a high intensity arc.’ ( J .  Fluid Mech. 4, 1958, 529.) 

The left-hand side of equation (4) should be replaced by its logarithm to 
base e. G. L. CANN and A. C. DUCATI 




